

Clinical applications using triple quadrupole ICP-MS

Simon Lofthouse Thermo Fisher Scientific

The world leader in serving science

Overview

Testing for clinical applications

- Elemental analysis
 - Blood
 - Serum
 - Urine
 - Fluids
 - Tissue

Nutritional elements

- Nutritional status
- Cu, Zn, Se
- Mg, Mn
- Total parental nutrition
- Assessment after GI surgery

Thermo Scientific iCAP RQ/TQ ICP-MS

Applications in Clinical Science

- Toxicology
 - High/accute Hg, Cd, TI, Po
 - Medium/chronic As (speciation), Pb
 - Specific toxins AI (renal dialysis patients)
- Metal on Metal hip replacement patients
 - Co and Cr mainly also Ti, Mo, Ni for research
 - Indicative of poorly performing joints that may need replacement

Metal on metal hip replacements

Regulation

- April 2010 MHRA issued an advisory notice regarding MoM hip replacements:
- "put in place systems for the follow up of patients receiving MoM hip replacements where appropriate blood metal ion measurements and sectional imaging".
- If either Co or Cr levels are elevated above 7 ppb then further testing should be performed.

Medicines and Healthcare products Regulatory Agency Government agency

< 🥨

Medicines & Healthcare products Regulatory Agency

Cobalt as a biomarker of wear

Methods for Ti analysis

- GF-AAS titanium carbide formation is problematic
- Single quadrupole ICP-MS the most abundant Ti isotope (73.80%) at m/z 48 suffers from Ca isobaric interference
- HR-ICP-MS expensive hardware
- ICP-OES offers a cost effective alternative, challenges to get required LOD
- Triple quadrupole ICP-MS can be used with NH₃ to form the cluster ion Ti(NH₃)₃NH⁺

iCAP TQ

- Titanium in hip replacement samples
 - Lower LOQ possible using m/z 48
 - Use Ammonia as reaction gas

iCAP TQ measurement

Ti with NH₃ reaction gas:

Q1 – set to transmit Ti, potential interferents on the product ion (e.g. ¹¹⁴Cd) and lower mass interference precursors (e.g. ³¹P, ¹⁶O) rejected.

Q2 – filled with NH_3 . Ti collides and generates a range of adducts including ${}^{48}\text{Ti}(NH_3)_3NH^+$ at mass 114

Q3 – set to transmit mass 114, other masses rejected.

Multi-element analysis serum with iCAP TQ

	Measurement mode	Analyte/Product Ion mass	Internal standard								
Na	SQ-KED SQ-KED SQ-KED	23 24 31	⁷⁴ Ge ⁷⁴ Ge		LOD	MDL	Serum L-1		Serum L-2		Urine
Mg							Measured	Reference or reported value	Measured	Reference or reported value	Measured
s	SO-KED	94	74Ge	Na*	0.0027	0.027	2743	2330-3504	3255	2820-4241	297
2	CO KED	00	140-	Mg*	0.0001	0.0010	21.0	13.4-20.1	39.7	27.1-40.7	85.6
ĸ	SQ-KED	39	/*Ge	P*	0.0008	0.08	52.3	43.3-65.1	120	88-132	710
Ca	SQ-KED	44	⁷⁴ Ge	S*	0.145	1.3800	1100	1008	1495	1335	476
Fe	SQ-KED	56	⁷⁴ Ge	K*	0.0021	0.02	150	101-153	260	176-265	194
Li	SQ-KED	7	⁷⁴ Ge	Ca*	0.002	0.0200	90.1	69-104	124	95-143	99.
В	SQ-KED	11	⁷⁴ Ge	Fe*	0.00002	0.00023	1.64	1.17-1.77	2.18	1.72-2.58	0.0
A1	SO_KED	97	74Go	Li	1.13	11.2920	5778	4202-6320	10806	7739-11639	22
~	OQ KED	21	100	В	0.67	6.746	70.1	79.4	87	82.1	15
V	SQ-KED	51	/*Ge	AI	0.20	1.9670	54.2	25.2-75.7	122	96-144	13
Cr	SQ-KED	52	^{ze} Ge	V	0.002	0.022	1.04	1.10	1.26	1.10	0.2
Mn	SQ-KED	55	^{ze} Ge	Cr	0.008	0.0800	1.70	1.30-3.05	5.20	4.00-7.50	0.8
Co	SQ-KED	59	⁷⁴ Ge	Mn	0.008	0.084	10.7	7.9-11.9	14.2	11.6-17.4	0.9
Ni	SO-KED	60	шv	Co	0.0001	0.0010	1.38	0.67-1.57	2.16	2.13-3.97	0.0
7.	SO KED	00	14/2-0	Ni	0.006	0.055	6.26	3.38-7.9	9.41	7.9-11.9	1.
Zn	SQ-KED	00	- 68	Zn	0.051	0.5130	1052	844-1269	1527	1404-1831	3
As	SQ-KED	75	ωγ	As	0.002	0.018	0.383	0.400	0.374	0.380	1.
Se	SQ-KED	78	⁷⁴ Ge	Se	0.010	0.1000	80.8	51-120	124	95-176	7.
Rb	SQ-KED	85	ωγ	Rb	0.004	0.035	4.20	4.40	8.70	8.70	8
Sr	SQ-KED	88	шү	Sr	0.006	0.0570	95.7	95.0	106	110	8
				Mo	0.005	0.048	0.710	0.760	1.20	1.21	7.
	SQ-KED	111		¹⁰³ Rh	001	0.0100	0.130	0.130	0.140	0.140	0.5
		11/		74Go14N1H	002	0.02	6.64	6.80	6.38	6.80	0.
	I GENIL3	114		CIC INIT ₂	006	0.0600	11.6	10.4	16.1	15.0	0.0
	SQ-KED	121		125Te	022	0.219	/5.5	/1.8	69.9	60.9	8
				100-00	003	0.0300	1/2	190	133	139	2.
Ba	SO-KED	198	100Bb	РЬ	0.0007	0.007	0.370	0.400	0.666	0.660	0.4
Dh	SO KED	200	20905	U	0.0001	0.0010	0.288	0.302	0.357	0.359	0.0
PD	OQ-KED	208	Bi								
U	SQ-KED	238	209Bi								

Bio imaging with LA-ICP-MS

Bio-Imaging with Laser Ablation ICP-MS

- An increasing number of studies in the field of Life Sciences employ different imaging techniques
- Trace elements are involved in many biological functions, for example:
 - Cu, Fe, Zn are all enzyme cofactors, and accumulation/deficiency are currently being investigated for links to neurological disease
 - P is present in DNA, and phosphorylated proteins and peptides are 'activated' states in biological functions
 - S is present in thiol groups, e.g. cysteine
 - Na and K are present in Na/K channels, which regulate cellular transport functions
 - Ca and Mg are used in signal transduction, esp. in nerve cells.
 - Se deficiency is being investigated for links with neurological disorders

Bio-Imaging Technique: Balance between spatial resolution and speed

 Highest resolution can be achieved by mapping point-by-point, which leads very long analysis times. The best balance between speed and resolution is so-called 'line-mapping':

Typical interferences in LA-ICP-MS based bio-imaging

Isotope	Abundanc e [%]	Possible interferences					
31P	100	¹⁶ O ¹ H ¹⁴ N ⁺ , ¹⁶ O ¹⁵ N ⁺ , ¹² C ¹⁶ O ¹ H ⁺ , ⁶³ Cu ⁺⁺					
32S	95.0	¹⁶ O ₂ ⁺ , ³¹ P ¹ H ⁺ , ¹² C ²⁰ Ne ⁺ , ¹⁶ O ¹ H ¹⁵ N ⁺					
34S	4.3	¹⁶ O ¹⁸ O+					
40Ca	96.9	⁴⁰ Ar ⁺ , ³⁹ K ¹ H ⁺					
44Ca	2.1	¹⁶ O ¹ H ²⁷ Al+, ⁴⁰ Ar ⁴ He+, ¹² C ³² S+, ¹⁶ O ²⁸ Si+					
56Fe	91.8	⁴⁰ Ar ¹⁶ O⁺, ¹ H ⁵⁵ Mn⁺, ¹⁶ O ⁴⁰ Ca⁺, ¹⁶ O ¹ H ³⁹ K⁺					
57Fe	2.1	¹⁶ O ¹ H ⁴⁰ Ar ⁺ , ¹⁶ O ¹ H ⁴⁰ Ca ⁺ , ¹⁶ O ⁴¹ K ⁺					
63Cu	69.2	⁴⁰ Ar ²³ Na ⁺ , ³¹ P ¹⁶ O ₂ ⁺ , ⁴⁷ Ti ¹⁶ O ⁺ , ²³ Na ⁴⁰ Ca ⁺ , ⁴⁶ Ca ¹⁶ O ¹ H ⁺					
66Zn	27.9	³² S ¹⁷ O ₂ ⁺ , ³³ S ¹⁶ O ¹⁷ O ⁺ , ³² S ³⁴ S ⁺ , ³³ S ₂ ⁺					
78Se	23.8	⁴⁰ Ar ³⁸ Ar ⁺ , ³⁸ Ar ⁴⁰ Ca ⁺					
80Se	49.6	⁴⁰ Ar ₂ ⁺ , ⁴⁰ Ar ⁴⁰ Ca ⁺ , ¹⁶ O ¹ H ⁶³ Cu ⁺					

 Isobaric and polyatomic interferences caused by complex bio matrices leading to false positive results

> • P and S difficult to access due to presence of interferences from background (gas) species

 Ca and Fe is complicated by both background gas interferences and by the sample

Bio-imaging using the iCAP TQ ICP-MS

SQ-KED vs TQ-O₂ analysis of liver thin sections

SQ-KED vs TQ-O₂: ²³Na

Na distribution is clearly visible in both modes. $TQ-O_2$ is a good compromise when several elements have to be analyzed at the same time, even if not all of them benefit from the interference correction.

SQ-KED vs TQ-O₂: ⁵⁶Fe vs ⁵⁶Fe¹⁶O

Fe distribution is shown similarly in SQ-KED and TQ-O₂ mode;

LA-ICP-MS kidney thin sections

Summary

• Triple quadrupole ICP-MS can be used effectively for clinical measurements

• iCAP TQ measurements for routine clinical measurements compares well to routine single quadrupole measurements

• Triple quadrupole ICP-MS shown to provide excellent performance for the determination of trace element analysis in biological research samples

• TQ-ICP-MS provides accurate results for Ti in serum samples

• TQ-ICP-MS can be effectively used for imaging of biological samples when coupled with a laser ablation system

Questions

