

BIOECONOMY BUILT ENVIRONMENT ICT BIOSCIENCE AND MATERIALS SAFETY & TRANSPORT CERTIFICATION

Research Institutes of Sweden

16th Nordic User meeting for AAS, ICP-AES and ICP-MS **Day 2 – Sample prep., quality control and more....**

TROLLBOKEN AB

Quality Control in our Laboratories

The to be revised "Troll book" TR569 www.nordtest.info

Purpose of internal QC

- Identify whether results can be released to the customer
- Identify trends
- Monitor method performance over time

There are different charts for monitoring different aspects of method performance

Nordtest TR 569 Handbook for Internal Quality conTROLL

Based on experience gained by many laboratories using QC since 1980s in the Nordic countries.

Some general recommendations in QC

Control limits

- Use fixed limit
- Use target limits if possible
 - Multielement analyses target limit!

Central line

- Use fixed central line
- Use reference value if possible

Daily interpretation of QC

• All control values in green area are OK

Terminology in internal QC

• Control sample:

- Sample material whose analytical results are used to construct control charts, e.g. standard solutions, test samples, blank samples
- Control value:
 - Value entered on the control chart
- Measurement result:
 - Value reported as defined in the method. It is derived from the response by application of the calibration function
- Control limits:
 - Limits in a control chart (warning and action)

Planning QC

- Type of QC
 - Standard solutions, stable test samples, blank samples...
- Number of control sample
- Number of measurements made on control sample
- Frequency of QC
- Type of control chart
- Setting control limits
- Interpretation of charts
- Procedure for long-term review of charts

X-chart

- Used to monitor bias and precision
- Individual control values plotted in time ordered sequence

X-chart

- Used to detect changes in the mean (bias)...
 - if the mean shifts due to presence of bias, results will be nearer to one set of warning limits so probability of an 'out of control' situation increases
- ...and changes in standard deviation (precision)
 - if standard deviation increases, scatter of results will increase so probability of an 'out of control' situation increases
- Variations on the simple *x*-chart
 - plot mean of *n* results
 - plot %recovery central line is target of 100% recovery

Range chart – R or r%

- Used specifically to monitor repeatability (within-run precision)
 - control value is range of each set of *n* results ($R = x_{max} x_{min}$)
 - typically *n*=2 or 3, for larger *n* the standard deviation can be plotted
 - can also plot % range (r%) or CV%

Uncertainty over the measurement range

Measured	Measurement Uncertainty, U(95%)	
value	Absolute	Relative
3 - 20 ug/L	2 ug/L	
20 - ug/L		10 %

Daily interpretation

Green area (within warning limits) \rightarrow the test sample results are reported

Red area (outside the action limits) \rightarrow no test sample results are reported

Yellow area (between warning and action limits) $\rightarrow 2 \text{ out of } 3 \text{ in yellow area} - no \text{ test samples are reported}$

Daily interpretation

X-Chart: Pb

TROLLBOKEN AB

Rules that we do NOT recommend

In ISO 8258 Shewhart control charts (1991) there are more rules e.g.

- Nine points in a row on one side of the central line
- Six points increasing or decreasing
- Fourteen points in a row alternating up and down

In the Westgard rules (www.westgard.com) there are **also** more rules e.g.

• Four points in a row between the action and warning limit

Some general recommendations in QC

Control limits

- Use fixed limit
- Use target limits if possible
 - Multielement analyses target limit!

Central line

- Use fixed central line
- Use reference value if possible

Daily interpretation of QC

• All control values in green area are OK

Target control limits

Target control limits based on customers requirement

The standard deviation needed for the control chart, s_{target} is estimated from the requirement on s_{Rw} (the within laboratory **R**eproducibility) from

- □ Client/Production
- □ Directive e.g. EU
- **Regulations**
 - Information in standard method

Ladder of Errors

Target control limits – what does the Troll say?

From a target uncertainty, U $s_{Rw} = U/4$

When test and control samples are similar and bias is low* $s_{Rw} = U/3$

TROLLBOKEN AR

U = expanded uncertainty s_{Rw} = within-lab reproducibility

*Will be in next version of TR569

www.nordtest.info

Target limits for a balance

Use 5 digits as action limits

 4 decimal Mettler AX204 Nominal weight 10.0001 g. Action limits 10,0006 and 9.9996 g.

Target limits – demand in environmental sector

- Drinking water directive 98/83/EC
- An environmental directive 09/90/EC
- German demands from LAWA* AQS Merkblatt A6/1 2004
- Danish demands in law BEK nr 1146 24/10 2017 https://www.retsinformation.dk/Forms/R0710.aspx?id=194194

*The LAWA is the German Working Group on water issues of the Federal States and the Federal Government represented by the Federal Environment Ministry

Target limits – demand from MSA

Measurement System Analysis MSA sets demand from specification (tolerance)

- \Box Bias ≈ 0
- Acceptable $s_{Rw} < 5\%$ of specification
- □ Good s_{Rw} < 1.7 % of specification

Target limits – EU drinking water directive

At the level of interest

□ Bias < 10 %

• Acceptable $s_{Rw} < 5\%$ of specification

Uncertainty estimation - Control limits give s_{Rw}

 70

 65

 60

 55

 50

 1-Feb

 22-Mar

 10-May

 28-Jun

 16-Aug

 4-Oct

 22-Nov

 10-May

 28-Jun

 16-Aug

 4-Oct

 22-Nov

 10-Jan

 28-Feb

 Date of analysis

The control limits can be set wider - target control limits Important to the use the actual control limits for s_{Rw}

NOTE if test samples are more difficult one needs to add a repeatability *s*.

Some general recommendations in QC

Control limits

- Use fixed limit
- Use target limits if possible
 - Multielement analyses target limit!

Central line

- Use fixed central line
- Use reference value if possible

Daily interpretation of QC

• All control values in green area are OK

Thanks for listening – more info www.trollboken.se

Analytical method

REQUIREMENT

METHOD TO LAB

INTERNAL QUALITY CONTROL (QC)

INSTRUCTION (SOP)

VALIDATION

PRELIMINARY UNCERTAINTY

ACCREDITATION

METHOD IN USE

PROFICIENCY TESTING (PT)

REVIEW

UNCERTAINTY (U)

ANNUAL QC REVIEW

SVENSKA

Set up the internal quality control by choosing suitable control samples and set-up control charts with preliminary control limits (preferably *target control limits*) - see Nordtest TR 569 "Trollbok" for further guidance, www.nordtest.info

